it-swarm-pt.tech

Como determinar o consumo de CPU e memória de dentro de um processo?

Uma vez tive a tarefa de determinar os seguintes parâmetros de desempenho dentro de um aplicativo em execução:

  • Memória virtual total disponível
  • Memória virtual usada atualmente
  • Memória virtual atualmente usada pelo meu processo
  • Total RAM disponível
  • RAM usada atualmente
  • RAM atualmente usada pelo meu processo
  • % De CPU usada atualmente
  • % De CPU usada atualmente pelo meu processo

O código tinha que ser executado no Windows e no Linux. Mesmo que isso pareça ser uma tarefa padrão, encontrar as informações necessárias nos manuais (API do WIN32, GNUdocs) bem como na Internet levou vários dias, porque há muitas informações incompletas/incorretas/desatualizadas informações sobre este tópico podem ser encontradas por aí.

Para evitar que outros passassem pelo mesmo problema, achei que seria uma boa ideia coletar todas as informações espalhadas, além do que encontrei por tentativa e erro aqui em um só lugar.

536
Lanzelot

Janelas

Alguns dos valores acima estão facilmente disponíveis a partir da API do Win32 apropriada, eu apenas os listo aqui por completo. Outros, no entanto, precisam ser obtidos na biblioteca do Performance Data Helper (PDH), que é um pouco "não intuitiva" e exige muitas tentativas e erros dolorosos para chegar ao trabalho. (Pelo menos eu demorei bastante, talvez eu tenha sido apenas um pouco idiota ...)

Nota: para maior clareza, toda a verificação de erros foi omitida do código a seguir. Verifique os códigos de retorno ...!


  • Memória Virtual Total:

    #include "windows.h"
    
    MEMORYSTATUSEX memInfo;
    memInfo.dwLength = sizeof(MEMORYSTATUSEX);
    GlobalMemoryStatusEx(&memInfo);
    DWORDLONG totalVirtualMem = memInfo.ullTotalPageFile;
    

    Nota: O nome "TotalPageFile" é um pouco enganador aqui. Na realidade, esse parâmetro fornece o "Tamanho da Memória Virtual", que é o tamanho do arquivo de troca mais a RAM instalada.

  • Memória Virtual usada atualmente:

    O mesmo código que em "Total Virtual Memory" e depois

    DWORDLONG virtualMemUsed = memInfo.ullTotalPageFile - memInfo.ullAvailPageFile;
    
  • Memória virtual usada atualmente pelo processo atual:

    #include "windows.h"
    #include "psapi.h"
    
    PROCESS_MEMORY_COUNTERS_EX pmc;
    GetProcessMemoryInfo(GetCurrentProcess(), &pmc, sizeof(pmc));
    SIZE_T virtualMemUsedByMe = pmc.PrivateUsage;
    



  • Memória Física Total (RAM):

    O mesmo código que em "Total Virtual Memory" e depois

    DWORDLONG totalPhysMem = memInfo.ullTotalPhys;
    
  • Memória física usada atualmente:

    Same code as in "Total Virtual Memory" and then
    
    DWORDLONG physMemUsed = memInfo.ullTotalPhys - memInfo.ullAvailPhys;
    
  • Memória física usada atualmente pelo processo atual:

    O mesmo código que em "Memória virtual usada atualmente pelo processo atual" e depois

    SIZE_T physMemUsedByMe = pmc.WorkingSetSize;
    



  • CPU usada atualmente:

    #include "TCHAR.h"
    #include "pdh.h"
    
    static PDH_HQUERY cpuQuery;
    static PDH_HCOUNTER cpuTotal;
    
    void init(){
        PdhOpenQuery(NULL, NULL, &cpuQuery);
        // You can also use L"\\Processor(*)\\% Processor Time" and get individual CPU values with PdhGetFormattedCounterArray()
        PdhAddEnglishCounter(cpuQuery, L"\\Processor(_Total)\\% Processor Time", NULL, &cpuTotal);
        PdhCollectQueryData(cpuQuery);
    }
    
    double getCurrentValue(){
        PDH_FMT_COUNTERVALUE counterVal;
    
        PdhCollectQueryData(cpuQuery);
        PdhGetFormattedCounterValue(cpuTotal, PDH_FMT_DOUBLE, NULL, &counterVal);
        return counterVal.doubleValue;
    }
    
  • CPU atualmente usada pelo processo atual:

    #include "windows.h"
    
    static ULARGE_INTEGER lastCPU, lastSysCPU, lastUserCPU;
    static int numProcessors;
    static HANDLE self;
    
    void init(){
        SYSTEM_INFO sysInfo;
        FILETIME ftime, fsys, fuser;
    
        GetSystemInfo(&sysInfo);
        numProcessors = sysInfo.dwNumberOfProcessors;
    
        GetSystemTimeAsFileTime(&ftime);
        memcpy(&lastCPU, &ftime, sizeof(FILETIME));
    
        self = GetCurrentProcess();
        GetProcessTimes(self, &ftime, &ftime, &fsys, &fuser);
        memcpy(&lastSysCPU, &fsys, sizeof(FILETIME));
        memcpy(&lastUserCPU, &fuser, sizeof(FILETIME));
    }
    
    double getCurrentValue(){
        FILETIME ftime, fsys, fuser;
        ULARGE_INTEGER now, sys, user;
        double percent;
    
        GetSystemTimeAsFileTime(&ftime);
        memcpy(&now, &ftime, sizeof(FILETIME));
    
        GetProcessTimes(self, &ftime, &ftime, &fsys, &fuser);
        memcpy(&sys, &fsys, sizeof(FILETIME));
        memcpy(&user, &fuser, sizeof(FILETIME));
        percent = (sys.QuadPart - lastSysCPU.QuadPart) +
            (user.QuadPart - lastUserCPU.QuadPart);
        percent /= (now.QuadPart - lastCPU.QuadPart);
        percent /= numProcessors;
        lastCPU = now;
        lastUserCPU = user;
        lastSysCPU = sys;
    
        return percent * 100;
    }
    

Linux

No Linux, a escolha que parecia óbvia no início era usar as APIs POSIX como getrusage() etc. Passei algum tempo tentando fazer com que isso funcionasse, mas nunca obtive valores significativos. Quando finalmente chequei as fontes do kernel, descobri que aparentemente essas APIs ainda não estão completamente implementadas a partir do kernel 2.6 do Linux !?

No final, obtive todos os valores através de uma combinação de leitura do pseudo-sistema de arquivos /proc e das chamadas do kernel.

  • Memória Virtual Total:

    #include "sys/types.h"
    #include "sys/sysinfo.h"
    
    struct sysinfo memInfo;
    
    sysinfo (&memInfo);
    long long totalVirtualMem = memInfo.totalram;
    //Add other values in next statement to avoid int overflow on right hand side...
    totalVirtualMem += memInfo.totalswap;
    totalVirtualMem *= memInfo.mem_unit;
    
  • Memória Virtual usada atualmente:

    O mesmo código que em "Total Virtual Memory" e depois

    long long virtualMemUsed = memInfo.totalram - memInfo.freeram;
    //Add other values in next statement to avoid int overflow on right hand side...
    virtualMemUsed += memInfo.totalswap - memInfo.freeswap;
    virtualMemUsed *= memInfo.mem_unit;
    
  • Memória virtual usada atualmente pelo processo atual:

    #include "stdlib.h"
    #include "stdio.h"
    #include "string.h"
    
    int parseLine(char* line){
        // This assumes that a digit will be found and the line ends in " Kb".
        int i = strlen(line);
        const char* p = line;
        while (*p <'0' || *p > '9') p++;
        line[i-3] = '\0';
        i = atoi(p);
        return i;
    }
    
    int getValue(){ //Note: this value is in KB!
        FILE* file = fopen("/proc/self/status", "r");
        int result = -1;
        char line[128];
    
        while (fgets(line, 128, file) != NULL){
            if (strncmp(line, "VmSize:", 7) == 0){
                result = parseLine(line);
                break;
            }
        }
        fclose(file);
        return result;
    }
    



  • Memória Física Total (RAM):

    O mesmo código que em "Total Virtual Memory" e depois

    long long totalPhysMem = memInfo.totalram;
    //Multiply in next statement to avoid int overflow on right hand side...
    totalPhysMem *= memInfo.mem_unit;
    
  • Memória física usada atualmente:

    O mesmo código que em "Total Virtual Memory" e depois

    long long physMemUsed = memInfo.totalram - memInfo.freeram;
    //Multiply in next statement to avoid int overflow on right hand side...
    physMemUsed *= memInfo.mem_unit;
    
  • Memória física usada atualmente pelo processo atual:

    Altere getValue () em "Memória Virtual atualmente usada pelo processo atual" da seguinte maneira:

    int getValue(){ //Note: this value is in KB!
        FILE* file = fopen("/proc/self/status", "r");
        int result = -1;
        char line[128];
    
        while (fgets(line, 128, file) != NULL){
            if (strncmp(line, "VmRSS:", 6) == 0){
                result = parseLine(line);
                break;
            }
        }
        fclose(file);
        return result;
    }
    



  • CPU usada atualmente:

    #include "stdlib.h"
    #include "stdio.h"
    #include "string.h"
    
    static unsigned long long lastTotalUser, lastTotalUserLow, lastTotalSys, lastTotalIdle;
    
    void init(){
        FILE* file = fopen("/proc/stat", "r");
        fscanf(file, "cpu %llu %llu %llu %llu", &lastTotalUser, &lastTotalUserLow,
            &lastTotalSys, &lastTotalIdle);
        fclose(file);
    }
    
    double getCurrentValue(){
        double percent;
        FILE* file;
        unsigned long long totalUser, totalUserLow, totalSys, totalIdle, total;
    
        file = fopen("/proc/stat", "r");
        fscanf(file, "cpu %llu %llu %llu %llu", &totalUser, &totalUserLow,
            &totalSys, &totalIdle);
        fclose(file);
    
        if (totalUser < lastTotalUser || totalUserLow < lastTotalUserLow ||
            totalSys < lastTotalSys || totalIdle < lastTotalIdle){
            //Overflow detection. Just skip this value.
            percent = -1.0;
        }
        else{
            total = (totalUser - lastTotalUser) + (totalUserLow - lastTotalUserLow) +
                (totalSys - lastTotalSys);
            percent = total;
            total += (totalIdle - lastTotalIdle);
            percent /= total;
            percent *= 100;
        }
    
        lastTotalUser = totalUser;
        lastTotalUserLow = totalUserLow;
        lastTotalSys = totalSys;
        lastTotalIdle = totalIdle;
    
        return percent;
    }
    
  • CPU atualmente usada pelo processo atual:

    #include "stdlib.h"
    #include "stdio.h"
    #include "string.h"
    #include "sys/times.h"
    #include "sys/vtimes.h"
    
    static clock_t lastCPU, lastSysCPU, lastUserCPU;
    static int numProcessors;
    
    void init(){
        FILE* file;
        struct tms timeSample;
        char line[128];
    
        lastCPU = times(&timeSample);
        lastSysCPU = timeSample.tms_stime;
        lastUserCPU = timeSample.tms_utime;
    
        file = fopen("/proc/cpuinfo", "r");
        numProcessors = 0;
        while(fgets(line, 128, file) != NULL){
            if (strncmp(line, "processor", 9) == 0) numProcessors++;
        }
        fclose(file);
    }
    
    double getCurrentValue(){
        struct tms timeSample;
        clock_t now;
        double percent;
    
        now = times(&timeSample);
        if (now <= lastCPU || timeSample.tms_stime < lastSysCPU ||
            timeSample.tms_utime < lastUserCPU){
            //Overflow detection. Just skip this value.
            percent = -1.0;
        }
        else{
            percent = (timeSample.tms_stime - lastSysCPU) +
                (timeSample.tms_utime - lastUserCPU);
            percent /= (now - lastCPU);
            percent /= numProcessors;
            percent *= 100;
        }
        lastCPU = now;
        lastSysCPU = timeSample.tms_stime;
        lastUserCPU = timeSample.tms_utime;
    
        return percent;
    }
    

TODO: Outras plataformas

Eu diria que alguns dos códigos Linux também funcionam para os Unixes, exceto para as partes que lêem o pseudo-sistema de arquivos/proc. Talvez no Unix essas partes possam ser substituídas por getrusage() e funções similares? Se alguém com conhecimento em Unix pudesse editar esta resposta e preencher os detalhes ?!

587
Lanzelot

Mac OS X

Eu estava esperando encontrar informações semelhantes para o Mac OS X também. Já que não estava aqui, eu saí e revirei eu mesmo. Aqui estão algumas das coisas que encontrei. Se alguém tiver outras sugestões, adoraria ouvi-las.

Memória Virtual Total

Este é complicado no Mac OS X porque ele não usa uma partição swap predefinida ou um arquivo como o Linux. Aqui está uma entrada da documentação da Apple:

Nota: Diferentemente da maioria dos sistemas operacionais baseados em Unix, o Mac OS X não usa uma partição swap pré-distribuída para a memória virtual. Em vez disso, ele usa todo o espaço disponível na partição de inicialização da máquina.

Então, se você quer saber quanta memória virtual ainda está disponível, você precisa obter o tamanho da partição raiz. Você pode fazer isso assim:

struct statfs stats;
if (0 == statfs("/", &stats))
{
    myFreeSwap = (uint64_t)stats.f_bsize * stats.f_bfree;
}

Total Virtual atualmente usado

Chamar systcl com a chave "vm.swapusage" fornece informações interessantes sobre o uso da troca:

sysctl -n vm.swapusage
vm.swapusage: total = 3072.00M  used = 2511.78M  free = 560.22M  (encrypted)

Não que o uso total de swap exibido aqui possa mudar se mais troca for necessária, conforme explicado na seção acima. Então, o total é realmente o total atual do swap. Em C++, esses dados podem ser consultados desta maneira:

xsw_usage vmusage = {0};
size_t size = sizeof(vmusage);
if( sysctlbyname("vm.swapusage", &vmusage, &size, NULL, 0)!=0 )
{
   perror( "unable to get swap usage by calling sysctlbyname(\"vm.swapusage\",...)" );
}

Observe que o "xsw_usage", declarado em sysctl.h, não parece documentado e suspeito que haja uma maneira mais portátil de acessar esses valores.

Memória virtual usada atualmente pelo meu processo

Você pode obter estatísticas sobre seu processo atual usando a função task_info. Isso inclui o tamanho atual do residente do seu processo e o tamanho virtual atual.

#include<mach/mach.h>

struct task_basic_info t_info;
mach_msg_type_number_t t_info_count = TASK_BASIC_INFO_COUNT;

if (KERN_SUCCESS != task_info(mach_task_self(),
                              TASK_BASIC_INFO, (task_info_t)&t_info, 
                              &t_info_count))
{
    return -1;
}
// resident size is in t_info.resident_size;
// virtual size is in t_info.virtual_size;

Total RAM disponível

A quantidade física RAM disponível em seu sistema está disponível usando a função do sistema sysctl desta forma:

#include <sys/types.h>
#include <sys/sysctl.h>
...
int mib[2];
int64_t physical_memory;
mib[0] = CTL_HW;
mib[1] = HW_MEMSIZE;
length = sizeof(int64_t);
sysctl(mib, 2, &physical_memory, &length, NULL, 0);

RAM usada atualmente

Você pode obter estatísticas gerais de memória da função do sistema Host_statistics.

#include <mach/vm_statistics.h>
#include <mach/mach_types.h>
#include <mach/mach_init.h>
#include <mach/mach_Host.h>

int main(int argc, const char * argv[]) {
    vm_size_t page_size;
    mach_port_t mach_port;
    mach_msg_type_number_t count;
    vm_statistics64_data_t vm_stats;

    mach_port = mach_Host_self();
    count = sizeof(vm_stats) / sizeof(natural_t);
    if (KERN_SUCCESS == Host_page_size(mach_port, &page_size) &&
        KERN_SUCCESS == Host_statistics64(mach_port, Host_VM_INFO,
                                        (Host_info64_t)&vm_stats, &count))
    {
        long long free_memory = (int64_t)vm_stats.free_count * (int64_t)page_size;

        long long used_memory = ((int64_t)vm_stats.active_count +
                                 (int64_t)vm_stats.inactive_count +
                                 (int64_t)vm_stats.wire_count) *  (int64_t)page_size;
        printf("free memory: %lld\nused memory: %lld\n", free_memory, used_memory);
    }

    return 0;
}

Uma coisa a notar aqui é que existem cinco tipos de páginas de memória no Mac OS X. Elas são as seguintes:

  1. Com fio páginas que estão bloqueadas no lugar e não podem ser trocadas
  2. Ativo páginas que estão sendo carregadas na memória física e seriam relativamente difíceis de trocar
  3. Inativo páginas que são carregadas na memória, mas não foram usadas recentemente e podem nem ser necessárias. Esses são candidatos em potencial para trocar. Essa memória provavelmente precisaria ser liberada.
  4. Em cache páginas que foram algumas como armazenadas em cache que provavelmente serão reutilizadas facilmente. A memória cache provavelmente não precisaria de flushing. Ainda é possível reativar as páginas armazenadas em cache
  5. Grátis páginas que são completamente gratuitas e prontas para serem usadas.

É bom notar que só porque o Mac OS X pode mostrar muito pouca memória livre real, às vezes, pode não ser uma boa indicação de quanto está pronto para ser usado em curto prazo.

RAM atualmente usada pelo meu processo

Veja a "Memória virtual atualmente usada pelo meu processo" acima. O mesmo código se aplica.

135
Michael Taylor

Linux

No Linux, esta informação está disponível no sistema de arquivos/proc. Eu não sou um grande fã do formato de arquivo de texto usado, pois cada distribuição Linux parece customizar pelo menos um arquivo importante. Uma olhada rápida como a fonte para 'ps' revela a bagunça.

Mas aqui é onde encontrar a informação que você procura:

/proc/meminfo contém a maioria das informações do sistema que você procura. Aqui parece no meu sistema; Eu acho que você está interessado em MemTotal , MemFree , SwapTotal e SwapFree :

Anderson cxc # more /proc/meminfo
MemTotal:      4083948 kB
MemFree:       2198520 kB
Buffers:         82080 kB
Cached:        1141460 kB
SwapCached:          0 kB
Active:        1137960 kB
Inactive:       608588 kB
HighTotal:     3276672 kB
HighFree:      1607744 kB
LowTotal:       807276 kB
LowFree:        590776 kB
SwapTotal:     2096440 kB
SwapFree:      2096440 kB
Dirty:              32 kB
Writeback:           0 kB
AnonPages:      523252 kB
Mapped:          93560 kB
Slab:            52880 kB
SReclaimable:    24652 kB
SUnreclaim:      28228 kB
PageTables:       2284 kB
NFS_Unstable:        0 kB
Bounce:              0 kB
CommitLimit:   4138412 kB
Committed_AS:  1845072 kB
VmallocTotal:   118776 kB
VmallocUsed:      3964 kB
VmallocChunk:   112860 kB
HugePages_Total:     0
HugePages_Free:      0
HugePages_Rsvd:      0
Hugepagesize:     2048 kB

Para utilização da CPU, você precisa fazer um pouco de trabalho. O Linux disponibiliza a utilização geral da CPU desde o início do sistema; isso provavelmente não é o que você está interessado. Se você quiser saber qual foi a utilização da CPU no último segundo ou 10 segundos, será necessário consultar as informações e calculá-las por conta própria.

A informação está disponível em /proc/stat , que está documentada muito bem em http://www.linuxhowtos.org/System/ procstat.htm ; aqui está o que parece na minha caixa de 4 núcleos:

Anderson cxc #  more /proc/stat
cpu  2329889 0 2364567 1063530460 9034 9463 96111 0
cpu0 572526 0 636532 265864398 2928 1621 6899 0
cpu1 590441 0 531079 265949732 4763 351 8522 0
cpu2 562983 0 645163 265796890 682 7490 71650 0
cpu3 603938 0 551790 265919440 660 0 9040 0
intr 37124247
ctxt 50795173133
btime 1218807985
processes 116889
procs_running 1
procs_blocked 0

Primeiro, você precisa determinar quantas CPUs (ou processadores, ou núcleos de processamento) estão disponíveis no sistema. Para fazer isso, conte o número de entradas 'cpuN', onde N inicia em 0 e incrementa. Não conte a linha 'cpu', que é uma combinação das linhas cpuN. No meu exemplo, você pode ver cpu0 até cpu3, ​​para um total de 4 processadores. De agora em diante, você pode ignorar cpu0..cpu3 e focar apenas na linha 'cpu'.

Em seguida, você precisa saber que o quarto número dessas linhas é uma medida de tempo ocioso e, portanto, o quarto número na linha 'cpu' é o tempo total ocioso de todos os processadores desde o tempo de inicialização. Esse tempo é medido nos "jiffies" do Linux, que são 1/100 de segundo cada.

Mas você não se importa com o tempo ocioso total; você se preocupa com o tempo ocioso em um determinado período, por exemplo, o último segundo. Calcule isso, você precisa ler este arquivo duas vezes, com um segundo de intervalo. Então você pode fazer um diff do quarto valor da linha. Por exemplo, se você pegar uma amostra e obter:

cpu  2330047 0 2365006 1063853632 9035 9463 96114 0

Então, um segundo depois, você recebe este exemplo:

cpu  2330047 0 2365007 1063854028 9035 9463 96114 0

Subtraia os dois números, e você terá um diff de 396, o que significa que sua CPU ficou inativa por 3,96 segundos nos últimos 1,00 segundo. O truque, claro, é que você precisa dividir pelo número de processadores. 3,96/4 = 0,99, e existe a sua porcentagem de inatividade; 99% inativo e 1% ocupado.

No meu código, eu tenho um buffer de 360 ​​entradas, e eu leio esse arquivo a cada segundo. Isso me permite calcular rapidamente a utilização da CPU por 1 segundo, 10 segundos, etc., até 1 hora.

Para as informações específicas do processo, você deve procurar em /proc/pid ; se você não se importa com o seu pid, você pode procurar em/proc/self.

A CPU usada pelo seu processo está disponível em /proc/self/stat . Este é um arquivo de aparência estranha que consiste em uma única linha; por exemplo:

19340 (whatever) S 19115 19115 3084 34816 19115 4202752 118200 607 0 0 770 384 2
 7 20 0 77 0 266764385 692477952 105074 4294967295 134512640 146462952 321468364
8 3214683328 4294960144 0 2147221247 268439552 1276 4294967295 0 0 17 0 0 0 0

Os dados importantes aqui são os 13º e 14º tokens (0 e 770 aqui). O 13º token é o número de jiffies que o processo executou no modo de usuário, e o 14º é o número de jiffies que o processo executou no modo kernel. Adicione os dois juntos e você terá a utilização total da CPU.

Novamente, você terá que provar este arquivo periodicamente e calcular o diff, para determinar o uso da CPU do processo ao longo do tempo.

Editar: lembre-se que quando você calcula a utilização da CPU do seu processo, você deve levar em conta 1) o número de threads em seu processo, e 2) o número de processadores no sistema. Por exemplo, se o seu processo single-threaded estiver usando apenas 25% da CPU, isso pode ser bom ou ruim. Bom em um sistema de processador único, mas ruim em um sistema de 4 processadores; Isso significa que seu processo está sendo executado constantemente e usando 100% dos ciclos de CPU disponíveis para ele.

Para as informações de memória específicas do processo, você precisa olhar para/proc/self/status, que se parece com isto:

Name:   whatever
State:  S (sleeping)
Tgid:   19340
Pid:    19340
PPid:   19115
TracerPid:      0
Uid:    0       0       0       0
Gid:    0       0       0       0
FDSize: 256
Groups: 0 1 2 3 4 6 10 11 20 26 27
VmPeak:   676252 kB
VmSize:   651352 kB
VmLck:         0 kB
VmHWM:    420300 kB
VmRSS:    420296 kB
VmData:   581028 kB
VmStk:       112 kB
VmExe:     11672 kB
VmLib:     76608 kB
VmPTE:      1244 kB
Threads:        77
SigQ:   0/36864
SigPnd: 0000000000000000
ShdPnd: 0000000000000000
SigBlk: fffffffe7ffbfeff
SigIgn: 0000000010001000
SigCgt: 20000001800004fc
CapInh: 0000000000000000
CapPrm: 00000000ffffffff
CapEff: 00000000fffffeff
Cpus_allowed:   0f
Mems_allowed:   1
voluntary_ctxt_switches:        6518
nonvoluntary_ctxt_switches:     6598

As entradas que começam com 'Vm' são as mais interessantes:

  • VmPeak é o espaço máximo de memória virtual usado pelo processo, em kB (1024 bytes).
  • VmSize é o espaço de memória virtual atual usado pelo processo, em kB. No meu exemplo, é bem grande: 651.352 kB ou cerca de 636 megabytes.
  • VmRss é a quantidade de memória que foi mapeada no espaço de endereço do processo, ou seu tamanho de conjunto residente. Isso é substancialmente menor (420.296 kB, ou cerca de 410 megabytes). A diferença: meu programa mapeou 636 MB via mmap (), mas acessou apenas 410 MB, e assim apenas 410 MB de páginas foram atribuídas a ele.

O único item sobre o qual não tenho certeza é Swapspace atualmente usado pelo meu processo . Eu não sei se isso está disponível.

61
Martin Del Vecchio

no windows você pode obter o uso da CPU por código abaixo:

#include <windows.h>
#include <stdio.h>

    //------------------------------------------------------------------------------------------------------------------
    // Prototype(s)...
    //------------------------------------------------------------------------------------------------------------------
    CHAR cpuusage(void);

    //-----------------------------------------------------
    typedef BOOL ( __stdcall * pfnGetSystemTimes)( LPFILETIME lpIdleTime, LPFILETIME lpKernelTime, LPFILETIME lpUserTime );
    static pfnGetSystemTimes s_pfnGetSystemTimes = NULL;

    static HMODULE s_hKernel = NULL;
    //-----------------------------------------------------
    void GetSystemTimesAddress()
    {
        if( s_hKernel == NULL )
        {   
            s_hKernel = LoadLibrary( L"Kernel32.dll" );
            if( s_hKernel != NULL )
            {
                s_pfnGetSystemTimes = (pfnGetSystemTimes)GetProcAddress( s_hKernel, "GetSystemTimes" );
                if( s_pfnGetSystemTimes == NULL )
                {
                    FreeLibrary( s_hKernel ); s_hKernel = NULL;
                }
            }
        }
    }
    //----------------------------------------------------------------------------------------------------------------

    //----------------------------------------------------------------------------------------------------------------
    // cpuusage(void)
    // ==============
    // Return a CHAR value in the range 0 - 100 representing actual CPU usage in percent.
    //----------------------------------------------------------------------------------------------------------------
    CHAR cpuusage()
    {
        FILETIME               ft_sys_idle;
        FILETIME               ft_sys_kernel;
        FILETIME               ft_sys_user;

        ULARGE_INTEGER         ul_sys_idle;
        ULARGE_INTEGER         ul_sys_kernel;
        ULARGE_INTEGER         ul_sys_user;

        static ULARGE_INTEGER    ul_sys_idle_old;
        static ULARGE_INTEGER  ul_sys_kernel_old;
        static ULARGE_INTEGER  ul_sys_user_old;

        CHAR  usage = 0;

        // we cannot directly use GetSystemTimes on C language
        /* add this line :: pfnGetSystemTimes */
        s_pfnGetSystemTimes(&ft_sys_idle,    /* System idle time */
            &ft_sys_kernel,  /* system kernel time */
            &ft_sys_user);   /* System user time */

        CopyMemory(&ul_sys_idle  , &ft_sys_idle  , sizeof(FILETIME)); // Could been optimized away...
        CopyMemory(&ul_sys_kernel, &ft_sys_kernel, sizeof(FILETIME)); // Could been optimized away...
        CopyMemory(&ul_sys_user  , &ft_sys_user  , sizeof(FILETIME)); // Could been optimized away...

        usage  =
            (
            (
            (
            (
            (ul_sys_kernel.QuadPart - ul_sys_kernel_old.QuadPart)+
            (ul_sys_user.QuadPart   - ul_sys_user_old.QuadPart)
            )
            -
            (ul_sys_idle.QuadPart-ul_sys_idle_old.QuadPart)
            )
            *
            (100)
            )
            /
            (
            (ul_sys_kernel.QuadPart - ul_sys_kernel_old.QuadPart)+
            (ul_sys_user.QuadPart   - ul_sys_user_old.QuadPart)
            )
            );

        ul_sys_idle_old.QuadPart   = ul_sys_idle.QuadPart;
        ul_sys_user_old.QuadPart   = ul_sys_user.QuadPart;
        ul_sys_kernel_old.QuadPart = ul_sys_kernel.QuadPart;

        return usage;
    }
    //------------------------------------------------------------------------------------------------------------------
    // Entry point
    //------------------------------------------------------------------------------------------------------------------
    int main(void)
    {
        int n;
        GetSystemTimesAddress();
        for(n=0;n<20;n++)
        {
            printf("CPU Usage: %3d%%\r",cpuusage());
            Sleep(2000);
        }
        printf("\n");
        return 0;
    }
12
sayyed mohsen zahraee

Linux

Uma maneira portátil de ler a memória e carregar números é a chamada sysinfo

Uso

   #include <sys/sysinfo.h>

   int sysinfo(struct sysinfo *info);

DESCRIÇÃO

   Until Linux 2.3.16, sysinfo() used to return information in the
   following structure:

       struct sysinfo {
           long uptime;             /* Seconds since boot */
           unsigned long loads[3];  /* 1, 5, and 15 minute load averages */
           unsigned long totalram;  /* Total usable main memory size */
           unsigned long freeram;   /* Available memory size */
           unsigned long sharedram; /* Amount of shared memory */
           unsigned long bufferram; /* Memory used by buffers */
           unsigned long totalswap; /* Total swap space size */
           unsigned long freeswap;  /* swap space still available */
           unsigned short procs;    /* Number of current processes */
           char _f[22];             /* Pads structure to 64 bytes */
       };

   and the sizes were given in bytes.

   Since Linux 2.3.23 (i386), 2.3.48 (all architectures) the structure
   is:

       struct sysinfo {
           long uptime;             /* Seconds since boot */
           unsigned long loads[3];  /* 1, 5, and 15 minute load averages */
           unsigned long totalram;  /* Total usable main memory size */
           unsigned long freeram;   /* Available memory size */
           unsigned long sharedram; /* Amount of shared memory */
           unsigned long bufferram; /* Memory used by buffers */
           unsigned long totalswap; /* Total swap space size */
           unsigned long freeswap;  /* swap space still available */
           unsigned short procs;    /* Number of current processes */
           unsigned long totalhigh; /* Total high memory size */
           unsigned long freehigh;  /* Available high memory size */
           unsigned int mem_unit;   /* Memory unit size in bytes */
           char _f[20-2*sizeof(long)-sizeof(int)]; /* Padding to 64 bytes */
       };

   and the sizes are given as multiples of mem_unit bytes.
11
Mark Lakata

QNX

Uma vez que isto é como uma "wikipage de código" eu quero adicionar algum código da base de conhecimento QNX (nota: este não é o meu trabalho, mas eu verifiquei e funciona bem no meu sistema):

Como obter o uso da CPU em%: http://www.qnx.com/support/knowledgebase.html?id=50130000000P9b5

#include <atomic.h>
#include <libc.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/iofunc.h>
#include <sys/neutrino.h>
#include <sys/resmgr.h>
#include <sys/syspage.h>
#include <unistd.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/debug.h>
#include <sys/procfs.h>
#include <sys/syspage.h>
#include <sys/neutrino.h>
#include <sys/time.h>
#include <time.h>
#include <fcntl.h>
#include <devctl.h>
#include <errno.h>

#define MAX_CPUS 32

static float Loads[MAX_CPUS];
static _uint64 LastSutime[MAX_CPUS];
static _uint64 LastNsec[MAX_CPUS];
static int ProcFd = -1;
static int NumCpus = 0;


int find_ncpus(void) {
    return NumCpus;
}

int get_cpu(int cpu) {
    int ret;
    ret = (int)Loads[ cpu % MAX_CPUS ];
    ret = max(0,ret);
    ret = min(100,ret);
    return( ret );
}

static _uint64 nanoseconds( void ) {
    _uint64 sec, usec;
    struct timeval tval;
    gettimeofday( &tval, NULL );
    sec = tval.tv_sec;
    usec = tval.tv_usec;
    return( ( ( sec * 1000000 ) + usec ) * 1000 );
}

int sample_cpus( void ) {
    int i;
    debug_thread_t debug_data;
    _uint64 current_nsec, sutime_delta, time_delta;
    memset( &debug_data, 0, sizeof( debug_data ) );

    for( i=0; i<NumCpus; i++ ) {
        /* Get the sutime of the idle thread #i+1 */
        debug_data.tid = i + 1;
        devctl( ProcFd, DCMD_PROC_TIDSTATUS,
        &debug_data, sizeof( debug_data ), NULL );
        /* Get the current time */
        current_nsec = nanoseconds();
        /* Get the deltas between now and the last samples */
        sutime_delta = debug_data.sutime - LastSutime[i];
        time_delta = current_nsec - LastNsec[i];
        /* Figure out the load */
        Loads[i] = 100.0 - ( (float)( sutime_delta * 100 ) / (float)time_delta );
        /* Flat out strange rounding issues. */
        if( Loads[i] < 0 ) {
            Loads[i] = 0;
        }
        /* Keep these for reference in the next cycle */
        LastNsec[i] = current_nsec;
        LastSutime[i] = debug_data.sutime;
    }
    return EOK;
}

int init_cpu( void ) {
    int i;
    debug_thread_t debug_data;
    memset( &debug_data, 0, sizeof( debug_data ) );
/* Open a connection to proc to talk over.*/
    ProcFd = open( "/proc/1/as", O_RDONLY );
    if( ProcFd == -1 ) {
        fprintf( stderr, "pload: Unable to access procnto: %s\n",strerror( errno ) );
        fflush( stderr );
        return -1;
    }
    i = fcntl(ProcFd,F_GETFD);
    if(i != -1){
        i |= FD_CLOEXEC;
        if(fcntl(ProcFd,F_SETFD,i) != -1){
            /* Grab this value */
            NumCpus = _syspage_ptr->num_cpu;
            /* Get a starting point for the comparisons */
            for( i=0; i<NumCpus; i++ ) {
                /*
                * the sutime of idle thread is how much
                * time that thread has been using, we can compare this
                * against how much time has passed to get an idea of the
                * load on the system.
                */
                debug_data.tid = i + 1;
                devctl( ProcFd, DCMD_PROC_TIDSTATUS, &debug_data, sizeof( debug_data ), NULL );
                LastSutime[i] = debug_data.sutime;
                LastNsec[i] = nanoseconds();
            }
            return(EOK);
        }
    }
    close(ProcFd);
    return(-1);
}

void close_cpu(void){
    if(ProcFd != -1){
        close(ProcFd);
        ProcFd = -1;
    }
}

int main(int argc, char* argv[]){
    int i,j;
    init_cpu();
    printf("System has: %d CPUs\n", NumCpus);
    for(i=0; i<20; i++) {
        sample_cpus();
        for(j=0; j<NumCpus;j++)
        printf("CPU #%d: %f\n", j, Loads[j]);
        sleep(1);
    }
    close_cpu();
}

Como obter a memória livre (!): http://www.qnx.com/support/knowledgebase.html?id=50130000000mlbx

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <err.h>
#include <sys/stat.h>
#include <sys/types.h>

int main( int argc, char *argv[] ){
    struct stat statbuf;
    paddr_t freemem;
    stat( "/proc", &statbuf );
    freemem = (paddr_t)statbuf.st_size;
    printf( "Free memory: %d bytes\n", freemem );
    printf( "Free memory: %d KB\n", freemem / 1024 );
    printf( "Free memory: %d MB\n", freemem / ( 1024 * 1024 ) );
    return 0;
} 
3
Boernii

Mac OS X - CPU

Uso geral da CPU:

De Recuperar informações do sistema no MacOS X? :

#include <mach/mach_init.h>
#include <mach/mach_error.h>
#include <mach/mach_Host.h>
#include <mach/vm_map.h>

static unsigned long long _previousTotalTicks = 0;
static unsigned long long _previousIdleTicks = 0;

// Returns 1.0f for "CPU fully pinned", 0.0f for "CPU idle", or somewhere in between
// You'll need to call this at regular intervals, since it measures the load between
// the previous call and the current one.
float GetCPULoad()
{
   Host_cpu_load_info_data_t cpuinfo;
   mach_msg_type_number_t count = Host_CPU_LOAD_INFO_COUNT;
   if (Host_statistics(mach_Host_self(), Host_CPU_LOAD_INFO, (Host_info_t)&cpuinfo, &count) == KERN_SUCCESS)
   {
      unsigned long long totalTicks = 0;
      for(int i=0; i<CPU_STATE_MAX; i++) totalTicks += cpuinfo.cpu_ticks[i];
      return CalculateCPULoad(cpuinfo.cpu_ticks[CPU_STATE_IDLE], totalTicks);
   }
   else return -1.0f;
}

float CalculateCPULoad(unsigned long long idleTicks, unsigned long long totalTicks)
{
  unsigned long long totalTicksSinceLastTime = totalTicks-_previousTotalTicks;
  unsigned long long idleTicksSinceLastTime  = idleTicks-_previousIdleTicks;
  float ret = 1.0f-((totalTicksSinceLastTime > 0) ? ((float)idleTicksSinceLastTime)/totalTicksSinceLastTime : 0);
  _previousTotalTicks = totalTicks;
  _previousIdleTicks  = idleTicks;
  return ret;
}
1
souch

Para Linux Você também pode usar/proc/self/statm para obter uma única linha de números contendo informações chave da memória de processo que é uma coisa mais rápida de processar do que passar por uma longa lista de informações reportadas conforme você obtém de proc/self/status

Veja http://man7.org/linux/man-pages/man5/proc.5.html

   /proc/[pid]/statm
          Provides information about memory usage, measured in pages.
          The columns are:

              size       (1) total program size
                         (same as VmSize in /proc/[pid]/status)
              resident   (2) resident set size
                         (same as VmRSS in /proc/[pid]/status)
              shared     (3) number of resident shared pages (i.e., backed by a file)
                         (same as RssFile+RssShmem in /proc/[pid]/status)
              text       (4) text (code)
              lib        (5) library (unused since Linux 2.6; always 0)
              data       (6) data + stack
              dt         (7) dirty pages (unused since Linux 2.6; always 0)
0
Steven Warner

Eu usei este código a seguir no meu projeto C++ e funcionou bem:

static HANDLE self;
static int numProcessors;
SYSTEM_INFO sysInfo;

double percent;

numProcessors = sysInfo.dwNumberOfProcessors;

//Getting system times information
FILETIME SysidleTime;
FILETIME SyskernelTime; 
FILETIME SysuserTime; 
ULARGE_INTEGER SyskernelTimeInt, SysuserTimeInt;
GetSystemTimes(&SysidleTime, &SyskernelTime, &SysuserTime);
memcpy(&SyskernelTimeInt, &SyskernelTime, sizeof(FILETIME));
memcpy(&SysuserTimeInt, &SysuserTime, sizeof(FILETIME));
__int64 denomenator = SysuserTimeInt.QuadPart + SyskernelTimeInt.QuadPart;  

//Getting process times information
FILETIME ProccreationTime, ProcexitTime, ProcKernelTime, ProcUserTime;
ULARGE_INTEGER ProccreationTimeInt, ProcexitTimeInt, ProcKernelTimeInt, ProcUserTimeInt;
GetProcessTimes(self, &ProccreationTime, &ProcexitTime, &ProcKernelTime, &ProcUserTime);
memcpy(&ProcKernelTimeInt, &ProcKernelTime, sizeof(FILETIME));
memcpy(&ProcUserTimeInt, &ProcUserTime, sizeof(FILETIME));
__int64 numerator = ProcUserTimeInt.QuadPart + ProcKernelTimeInt.QuadPart;
//QuadPart represents a 64-bit signed integer (ULARGE_INTEGER)

percent = 100*(numerator/denomenator);
0
Salman Ghaffar